Dimension structures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures in Dimension 7

The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n − 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be th...

متن کامل

Dimension in Ttt Structures

In this paper we consider two types of dimension that can be defined for products of one-dimensional topologically totally transcendental (t.t.t) structures. The first is topological and considers the interior of projections of the set onto lower dimensional products. The second one is based on algebraic dependence. We show that these definitions are equivalent for ω-saturated one-dimensional t...

متن کامل

quaternionic contact structures in dimension 7

The conformal infinity of a quaternionic-Kähler metric on a 4n-manifold with boundary is a codimension 3-distribution on the boundary called quaternionic contact. In dimensions 4n− 1 greater than 7, a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7, we prove a criterion for quaternionic contact structures to be the...

متن کامل

Fractal Dimension of the Cantor Moiré Structures

In a recently published paper (J. of Modern Optics 50 (9) (2003) 1477-1486) a qualitative analysis of the moiré effect observed by superposing two grids containing Cantor fractal structures was presented. It was shown that the moiré effect is sensible to variations in the order of growth, dimension and lacunarity of the Cantor fractal. It was also verified that self-similarity of the original f...

متن کامل

Metric Conformal Structures and Hyperbolic Dimension

For any hyperbolic complex X and a ∈ X we construct a visual metric ď = ďa on ∂X that makes the Isom(X)-action on ∂X bi-Lipschitz, Möbius, symmetric and conformal. We define a stereographic projection of ďa and show that it is a metric conformally equivalent to ďa. We also introduce a notion of hyperbolic dimension for hyperbolic spaces with group actions. Problems related to hyperbolic dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Classical Analysis

سال: 2019

ISSN: 1848-5987

DOI: 10.7153/jca-2019-14-07